1. 1

Abstract: “Formal verification of numerical programs is notoriously difficult. On the one hand, there exist automatic tools specialized in floatingpoint arithmetic, such as Gappa, but they target very restrictive logics. On the other hand, there are interactive theorem provers based on the LCF approach, such as Coq, that handle a general-purpose logic but that lack proof automation for floating-point properties. To alleviate these issues, we have implemented a mechanism for calling Gappa from a Coq interactive proof. This paper presents this combination and shows on several examples how this approach offers a significant speedup in the process of verifying floating-point programs.”

  1.